

UM10001_4

ISP110x Eval Kit User Manual for the HBCC Package

Rev. 04.00 — 14 April 2004

User manual

Document information

Info	Content
Keywords	ISP110x, ISP1102, ISP1104, ISP1105, ISP1106, USB, universal serial bus,
	transceiver.
Abstract	The ISP110x eval board helps you to evaluate the features of the ISP110x. This document explains the evaluation of the ISP110x HBCC package.
	<i>Notes</i> : ISP110x denotes the ISP1102, ISP1104, ISP1105 and ISP1106 Philips Advanced Universal Serial Bus transceivers, and any future derivatives.

UM10001_4 ISP110x Eval Kit User Manual for the HBCC Package

Rev	Date	Description
4.0	April 2004	Removed ISP1107.
1.2	May 2003	Removed ISP1103
		Updated the document title.
1.1	Nov 2002	 Updated to include the ISP1102 and the ISP1103.
		• Changed the title from ISP1105/06/07 Eval Board User's Guide to ISP110x
		Eval Board User's Guide.
1.0	Jan 2002	First release

Contact information

For additional information, please visit: http://www.semiconductors.philips.com/ For sales office addresses, please send an email to: *sales.addresses@www.semiconductors.philips.com*

ISP110x Eval Kit User Manual for the HBCC Package

This is a legal agreement between you (either an individual or an entity) and Philips Semiconductors. By accepting this product, you indicate your agreement to the disclaimer specified as follows:

DISCLAIMER

PRODUCT IS DEEMED ACCEPTED BY RECIPIENT. THE PRODUCT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, PHILIPS SEMICONDUCTORS FURTHER DISCLAIMS ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANT ABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT. THE ENTIRE RISK ARISING OUT OF THE USE OR PERFORMANCE OF THE PRODUCT AND DOCUMENTATION REMAINS WITH THE RECIPIENT. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL PHILIPS SEMICONDUCTORS OR ITS SUPPLIERS BE LIABLE FOR ANY CONSEQUENTIAL, INCIDENTAL, DIRECT, INDIRECT, SPECIAL, PUNITIVE, OR OTHER DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) ARISING OUT OF THIS AGREEMENT OR THE USE OF OR INABILITY TO USE THE PRODUCT, EVEN IF PHILIPS SEMICONDUCTORS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

UM10001_4 ISP110x Eval Kit User Manual for the HBCC Package

Contents

1.			10x Eval Board	
	1.1	1.	Objective	5
	1.2	2.	Description	5
2.		Мос	de Selection for Applications	7
3.			er Supply Configurations	
4.		Fund	ction Testing	8
	4.1	1.	Function Selection	8
	4.2	2.	Driver Interface Selection for the ISP1104; ISP1105; ISP1106	8
	4.3	3.	Driver Interface Selection for the ISP1102	9
5.		Sche	ematic of the ISP110x1	0
6.		Bill	of Materials for the ISP110x Eval Board1	2
7.		Refe	erences1	2

The names of actual companies and products mentioned herein may be the trademarks of their respective owners. All other names, products, and trademarks are the property of their respective owners.

ISP110x Eval Kit User Manual for the HBCC Package

Note: ISP110x denotes the ISP1102, ISP1104, ISP1105 and ISP1106 Advanced Universal Serial Bus transceivers.

1. ISP110x Eval Board

1.1. Objective

The ISP110x evaluation (eval) board helps you to interface a transceiver for various applications.

1.2. Description

The ISP110x is a generic Universal Serial Bus (USB) transceiver Integrated Circuit (IC) that is compliant with *Universal Serial Bus Specification Rev. 2.0.* It operates linearly from 3.3 V to 5.0 V of power supply and is backward compatible with the PDIUSBP11A.

Both the PDIUSBP11A and the ISP110x support two types of driver interfaces: the Philips encoded data interface and the USB-IF standard data interface. This compatibility allows greater flexibility in designs and applications.

To facilitate testing, all the pins of the ISP110x are connected to one side of each of the headers H1, H2, H3 and H4. The other side of these headers is connected to the ground. Some pins of the ISP110x, such as MODE, \overline{OE} , SUSPND, VMO/FSE0, VPO/VO and SPEED, are pulled up using 4.7 k α resistors.

To operate the ISP110x in different types of transceivers, you may use jumpers. For example, for the speed mode, you can select the JP12 and JP13 jumpers or the JP14 or JP15 jumpers and connect to V_{pu} or +3.3 V. Jumpers, such as JP6 to JP11, in addition to their drive characterizing function are configured to accept different capacitors, depending on the requirement. For the board schematic diagram, see Section 5.

The mode of operating the eval board depends on the IC used, as well as some jumpers setting.

Figure 1-1: ISP110x Eval Kit

UM10001_4

ISP110x Eval Kit User Manual for the HBCC Package

H1, H2, H3 and H4 are the headers on the eval board for the ease of tapping out signals. Table 1-1 shows the signal contents of these headers and their corresponding signal names in the ISP110x product family.

Lloador	Signal	In				
Header	Signal	ISP1102	ISP1104	ISP1105	ISP1106	
H1	<u> </u>		ŌĒ	ŌĒ	ŌĒ	
	RCV	RCV	RCV	RCV	RCV	
	VP	VP/VPO	VP	VP	VP	
	VM	VM/VMO	VM	VM	VM	
	SUSPEND	SUSPEND	SUSPEND	SUSPEND	SUSPEND	
	SPEED	VBUSDET	VBUSDET	SPEED	SPEED	
H2	MODE	n.c. ^[1]	MODE	MODE	GND	
	VMO/FSE0	n.c. ^[1]	VMO/FSE0	VMO/FSE0	VMO	
	VPO/VO	n.c. ^[1]	VPO/VO	VPO/VO	VPO	
H3		Not used or	n the eval board;	can be ignored		
H4	SOFTCON	SOFTCON	SOFTCON	SOFTCON	SOFTCON	
	VMO	n.c. ^[1]	VMO/FSE0	VMO/FSE0	VMO	
	VPO	n.c. ^[1]	VPO/VO	VPO/VO	VPO	
	D+	D+	D+	D+	D+	
	D-	D-	D-	D-	D-	

Table 1-1: Signal Content of Headers and the Corresponding Signal Name in the ISP110x

[1] n.c.—denotes no connection.

Table 1-2 shows the jumper settings on the eval board.

Table	1-2: Jumper Settings	
-------	----------------------	--

Jumper	Setting
JP1	Connect to V _{CC(50)}
JP2	Short V _{CC(50)} to V _{reg(33)}
JP3	Connect to V _{reg(3.3)}
JP4	Connect to V _{cculo}
JP5	Connect to V _{BUS} line
JP6	Different capacitor leads for characterized testing
JP7	Different capacitor leads for characterized testing
JP8	Different capacitor leads for characterized testing
JP9	Different capacitor leads for characterized testing
JP10	Different capacitor leads for characterized testing
JP11	Different capacitor leads for characterized testing
JP12	Pull up on D-
JP13	Pull up on D+
JP14	Connect to V _{pu(3.3)}
JP15	Connect to V _{ren(3,3)}

ISP110x Eval Kit User Manual for the HBCC Package

2. Mode Selection for Applications

Table 2-1: Mode Selection					
IC Products	MODE Operation Mode				
and Packages ^[1]	(H2–Pin 1 and Pin 2)				
ISP1102W	No connection	Differential Input Mode (VO/VPO, VM/VMO)—			
		Bidirectional			
ISP1104W	Short	Single-Ended Input Mode (VO, FSE0)			
	Open	Differential Input Mode (VPO, VMO)			
ISP1105W	Short	Single-Ended Input Mode (VO, FSE0)			
	Open	Differential Input Mode (VPO, VMO)			
ISP1106W	Short	Differential Input Mode (VPO, VMO)			
ISP1106DH	Short	Differential Input Mode (VPO, VMO)			

1] W—HBCC16 package; DH—TSSOP16 IC package.

3. Power Supply Configurations

The ISP110x can be used with power supply configurations that can be dynamically changed. Jumpers JP1, JP2, JP3 and JP4 are used to suit the power supply application environment as shown in Table 3-1.

Mode	Environment	Connected	Jumpers	Remarks
		Voltages	Required	
Normal	+5.0 V	V _{cc}	JP1	Connected to a 5 V source (4.0 V to 5.5 V)
	operation			
		V _{CC(I/O)}	JP4	Connected to 1.65 V to 3.6 V range of the
				backend logic circuit (external supply voltage)
	+3.3 V	V _{cc}	JP3	$V_{\rm cc}$ and $V_{\rm reg(3.3V)}$ shorted and connected to a
	operation	V _{reg(3.3V)}	JP2	3.3 V source
		V _{CC(I/O)}	JP4	Connected to 1.65 V to 3.6 V range of the
				backend logic circuit (external supply voltage)
Disable	+5.0 V	V _{cc}	JP1	Only connected to a 5 V source
	operation			(4.0 V to 5.5 V); V _{CC(VO)} is not connected
	+3.3 V	V _{cc}	JP3	V_{cc} and $V_{rea(3.3V)}$ are shorted and only connected
	operation			to a 3.3 V source
		$V_{reg(3.3V)}$	JP2	V _{CC(VO)} is not connected
Sharing		V _{cc(I/O)}	JP4	Only $V_{cc(l/O)}$ is connected; V_{cc} and $V_{req(3.3V)}$ are not
				connected

Table 3-1: Power Supply Configurations

Jumper JP5 is used for the application to disconnect $V_{\scriptscriptstyle BUS}$ from $V_{\scriptscriptstyle CC}.$ This $V_{\scriptscriptstyle BUS}$ voltage is driven from the connected $V_{\scriptscriptstyle BUS}$ USB cable.

UM10001_4

ISP110x Eval Kit User Manual for the HBCC Package

Note: The ISP1102, ISP1105 and ISP1106 transceivers have a regulator bypass mode, in which $V_{cc(5.0)}$ can be connected to $V_{reg(3.3)}$ with a maximum voltage drop of 0.3 V (2.7 to 3.6 V). The ISP1104 does not support this mode.

4. Function Testing

4.1. Function Selection

Table 4-1: Function Table

SUSPND		RCV	VP/VM	D+, D-	Remarks
SUSPIND	OE	RCV	VP/VIVI	D+, D-	Reillaiks
LOW	LOW	Active	Active	Active	Driving and receiving (differential
					receiver active)
HIGH	LOW	Inactive ^[2]	Active	Active	Driving during suspend (differential
					receiver inactive) ^[3]
LOW	HIGH	Active	Active	Hi-Z	Receiving only ^[1]
HIGH	HIGH	Inactive ^[2]	Active	Hi-Z ^[1]	Low-power state
-					•

Other USB devices and external pull-up or pull-down resistors determine signal levels on D+, D-.
 In the suspend mode (SUSPND = HIGH), the differential receiver is inactive and the output RCV is always LOW.
 Out-of-suspend ('K') signaling is detected through the single-ended receivers VP and VM.

[3] During suspend, the slew rate control circuit of the low-speed operation is disabled. The D+ and D- lines are still driven to their intended states, without the slew rate control. This is permitted because driving during suspend is used to signal remote wake-up by driving a 'K' signal (one transition from idle to the 'K' state) for a period of 1 ms to 15 ms.

4.2. Driver Interface Selection for the ISP1104; ISP1105; ISP1106

Table 4-2: Driving Function

Mode	VPO/VO	VMO/FSE0	Data	Interface
0	LOW	LOW	Differential 0	Philips Encoded
	LOW	HIGH	SE0	Data Interface
	HIGH	LOW	Differential 1	
	HIGH	HIGH	SE0	
1	LOW	LOW	SE0	USB-IF Standard
	LOW	HIGH	Differential 0	Data Interface
	HIGH	LOW	Differential 1	
	HIGH	HIGH	Illegal Data	

Table 4-3: Driving function using single-ended input data interface ($\overline{OE} = L$)

[for ISP1104 and ISP1105 (MODE = L)]					
VO	Data				
LOW	Differential logic 0				
HIGH	Differential logic 1				
LOW	SEO				
HIGH	SEO				
	LOW HIGH LOW				

ISP110x Eval Kit User Manual for the HBCC Package

[for ISP1104, ISI	P1105 and ISP1106	(MODE = H)]		
VMO		VPO	Data	
LOW		LOW	SEO	
LOW		HIGH	Differential logic 1	
HIGH		LOW	Differential logic 0	
HIGH		HIGH	Illegal state	
Table 4-5: Receiving funct	tion ($\overline{OE} = H$)			
D+, D-	RCV	$VP^{(1)}$		
Differential logic 0	LOW	LOW	HIGH	
Differential logic 1	HIGH	HIGH	LOW	
SEO	RCV*[2]	LOW	LOW	

Table 4-4: Driving function using differential input data interface ($\overline{OE} = L$)

[1] VP = VM = 'H' indicates that the sharing mode ($V_{cc(5.0)}/V_{reg(3.3V)}$ is disconnected).

[2] RCV* denotes the signal level on output RCV just before the SE0 state occurs. This level is kept stable during the SE0 period.

4.3. Driver Interface Selection for the ISP1102

Table 4-6: Driving function using differential input data interface ($\overline{OE} = L$)

[for ISP1102]			
VM/VMO	VP/VPO	Data	
LOW	LOW	SEO	
LOW	HIGH	Differential logic 1	
HIGH	LOW	Differential logic 0	
HIGH	HIGH	SEO	

Table 4-7: Receiving function ($\overline{OE} = H$)

D+, D-	RCV	<i>VP</i> ⁽¹⁾	
Differential logic 0	LOW	LOW	HIGH
Differential logic 1	HIGH	HIGH	LOW
SEO	RCV* ^[2]	LOW	LOW

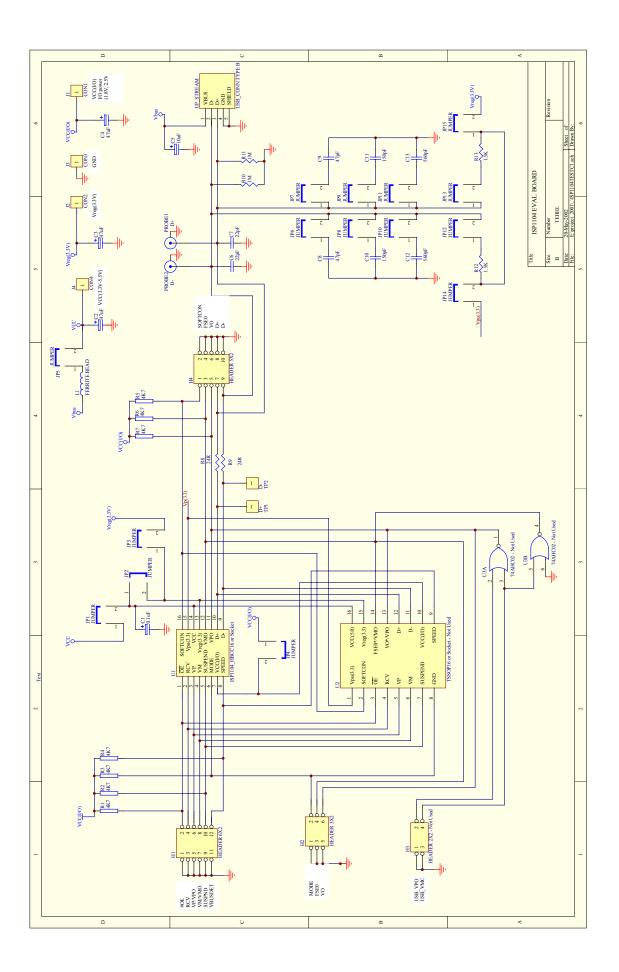
[1] VP/VPO = 'H' and VM/VMO = 'H' indicate the sharing mode ($V_{CC(5.0)}$ is disconnected).

[2] RCV* denotes the signal level on output RCV just before the SE0 state occurs. This level is kept stable during the SE0 period.

5. Schematic of the ISP110x

Note: IC U3 and H3 are only applied when the USB_VP and USB_VM signals are required to be inverted. For this transceiver application, it can be ignored.

The following modifications must be done in the schematic:


- R8 and R9 must be $33 \Omega \pm 1\%$.
- R10 and R11 can be removed.

Depending on the application, Table 5-1 provides guidelines for setting up the ISP110x HBCC16 package.

Pin Name	ISP1102	ISP1104	ISP1105	ISP1106
MODE	No connection	Differential—no	Differential—no	Connect to GND
		jumper	jumper	using jumper
		Single-ended—	Single-ended—	
		connect to GND	connect to GND	
		using jumper	using jumper	
SPEED	Not applicable	Not applicable	Full-speed—no	Full-speed—no
			jumper	jumper
			Low-speed—connect	Low-speed—connect
			to GND using	to GND using
			jumper	jumper
VBUSDET ^[1]	No jumper; R4	No jumper; R4 can	Not applicable	Not applicable
	can be removed	be removed		
VMO	No jumper; R6	No jumper; R6 can	No jumper	No jumper
	can be removed	be removed		
VPO	No jumper; R7	No jumper; R7 can	No jumper	No jumper
	can be removed	be removed		

Table 5-1: Setting up the ISP110x HBCC16 package

[1] The VBUSDET pin is a $V_{_{BUS}}$ output indicator. When $V_{_{BUS}}$ is greater than 4.0 V, output is HIGH; and when $V_{_{BUS}}$ is less than 3.6 V, output is LOW. This feature applies only to the ISP1102 and the ISP1104.

UM10001_4 ISP110x Eval Kit User Manual for the HBCC Package

6. Bill of Materials for the ISP110x Eval Board

Description	Reference	Value	Quantity
Power supply plugs	Con1, Con2, Con3, Con4	CON	4
Tantalum capacitors	C6, C7	22 pF	2
Electrolytic capacitor	C1	0.1 F	1
Electrolytic capacitors	C2, C3, C4	47 F	2
Electrolytic capacitor	C5	10 F	2
Tantalum capacitors	C8, C9	47 pF	2
Tantalum capacitors	C10, C11	150 pF	2
Tantalum capacitors	C12, C13	560 pF	2
Probes	D+, D-	_	2
Header	H1	6X2	1
Header	H2	5X2	1
Header	H3	3X2	1
Header	H4	2X2	1
Jumpers	JP1 to JP15	_	16
Resistors	R1, R2, R3, R4, R5, R6, R7	4.7 k Ω	7
Resistors	R12, R13	1.5 k Ω	2
Resistors	R10, R11	1 MΩ	2
Resistors	R8, R9	24 Ω	2
Ferrite bead	L1	_	1
UP_CONN	UP	_	1
74AHC02	U3	_	1
ISP1105/06	U1 or U2	_	2

Table 6 1. Pill of Materials for the ISP110x Eval Poard

7. References

- Universal Serial Bus Specification Rev. 2.0 ٠
- ISP1102 Advanced Universal Serial Bus transceiver data sheet ٠
- ISP1104 Advanced Universal Serial Bus transceiver data sheet •
- ISP1105/06 Advanced Universal Serial Bus transceivers data sheet. •